
ABSTRACT
Accurately reconstructing the speed of a yawing and braking
vehicle requires an estimate of the varying rates at which the
vehicle decelerated. This paper explores the accuracy of
several approaches to making this calculation. The first
approach uses the Bakker-Nyborg-Pacejka (BNP) tire force
model in conjunction with the Nicolas-Comstock-Brach
(NCB) combined tire force equations to calculate a yawing
and braking vehicle's deceleration rate. Application of this
model in a crash reconstruction context will typically require
the use of generic tire model parameters, and so, the research
in this paper explored the accuracy of using such generic
parameters. The paper then examines a simpler equation for
calculating a yawing and braking vehicle's deceleration rate
which was proposed by Martinez and Schlueter in a 1996
paper. It is demonstrated that this equation exhibits physically
unrealistic behavior that precludes it from being used to
accurately determine a vehicle's deceleration rate. Finally, the
paper moves on to consider an equation that is attributed to
the CRASH program in the 2010 edition of Traffic Crash
Reconstruction by Lynn Fricke. This equation is nearly as
simple as the Martinez and Schlueter equation, but its
behavior is more reasonable.

The BNP/NCB and the CRASH models are then used to
calculate vehicle deceleration rates and speeds for two full-
scale vehicle tests run by the authors, both involving yawing
and braking vehicles. Braking levels for the vehicles in these
tests were calculated using analysis of tire mark striations.
The results of these speed calculations are compared to the
measured speeds for each of those full-scale tests.

 
 
 

INTRODUCTION
Mathematically predicting the motion of a vehicle in response
to driver steering and braking inputs requires calculation of
the resultant tire force at each wheel position. Vehicle
dynamics simulation programs use such an approach to
calculate vehicle linear and rotational motion. However, in a
crash reconstruction context, simulation is not always
necessary, and a more simple analysis can yield the rate at
which a vehicle decelerated due to tire forces along a known
path. In this paper, the primary goal will be to calculate a
yawing and braking vehicle's translational speed at the
beginning of tire mark evidence using a calculated
deceleration rate. Three models were considered and will be
discussed below.

BAKKER-NYBORG-PACEJKA (BNP)
AND NICOLAS-COMSTOCK-BRACH
(NCB) MODEL
This tire modeling method begins by modeling and
calculating normalized longitudinal and lateral tire forces as
if they could be decoupled, calculating each one as if the
other was not present. In other words, the actual braking (or
longitudinal slip) level will be used to calculate a normalized
longitudinal tire force component as if there was no sideslip
angle. Then, the actual tire sideslip angle will be used to
calculate a normalized lateral tire force component as if there
was no braking. These calculations are carried out using a
zero-sideslip angle longitudinal tire force curve and a free-
rolling lateral tire force curve generated using generic,
representative coefficient values with the “magic formula” of
Bakker, Nyborg and Pacejka, or the BNP model [Reference
1]. These BNP model equations are used to calculate
decoupled normalized longitudinal and lateral tire forces as a
function of the longitudinal wheel slip ratio (s) and
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normalized tire sideslip angle (2α/π), respectively (α is the
tire sideslip angle, in radians).

For the analysis carried out in this paper, there will not be any
need to calculate the actual magnitude of the tire forces.
Instead, the calculations will yield tire forces that have been
normalized with the normal load on the tire. We will use the
letter Q to refer to the normalized tire forces in order to
distinguish them from the actual tire force magnitudes, for
which the literature typically uses the letter F. The generic
functional form of the BNP model equations for the
normalized tire forces is shown below in Equation (1). Both
the lateral and longitudinal tire force equations will take this
form, and so we have written this equation without any
subscripts on the Q and with a generic slip ratio, u. When
modeling longitudinal tire forces, the generic argument u will
become the longitudinal slip ratio, s. When modeling lateral
tire forces, u will become the lateral sideslip ratio, 2α/π (this
could also be referred to as the normalized sideslip angle).

(1)

When using this function to model the normalized
longitudinal tire force, Qx(s), the longitudinal slip ratio of the
tire, s, can vary between zero and one. A value of zero
corresponds to a free rolling tire and a value of one
corresponds to a fully locked tire. Similarly, for the
normalized lateral tire force, Qy(2α/π), the lateral sideslip
ratio or normalized tire sideslip angle can vary between zero
and one. A value of zero corresponds to a sideslip angle of
zero and a value of one corresponds to a sideslip angle of 90
degrees.

The parameter K in Equation (1) is set to a value of 100 and
acts as a scaling value to convert the lateral and longitudinal
slip ratios to percentages. The coefficients B, C, D, and E are
shape parameters that are chosen to empirically model a
specific set of tire data. For the calculations described in this

paper, the authors chose shape parameters that would yield
typical or representative tire force curves. Specifically, we
chose to match the curves shown in Figure 1 below, which
are from Reference 4 by Brach and Brach. The graph on the
left below represents the normalized longitudinal tire force
plotted with respect to the longitudinal slip ratio for a zero
sideslip angle. The graph on the right represents the
normalized lateral tire force plotted with respect to the lateral
sideslip ratio or normalized slip angle for a longitudinal slip
of zero. Table 1 lists the coefficients used in Equation (1) to
match the curves depicted in each of these graphs.

Table 1. Coefficient Values for Lateral and Longitudinal
BNP Equations

The curves of Figure 1 assume either yawing with no braking
or braking with no yawing. For a vehicle undergoing both
yawing and braking, the magnitudes of the longitudinal and
lateral components of the tire force cannot be decoupled in
this way. Braking will reduce the force available for
cornering, for instance. In terms of calculating an actual
resultant tire force, this situation could be remedied by
generating numerous tire force curves with Equation (1),
longitudinal tire force curves for a number of sideslip angle
conditions and lateral tire force curves for a number of
longitudinal slip levels. Values would then be selected from
these curves or functions based on the actual lateral and
longitudinal slip conditions. This is a rather cumbersome
solution, though, particularly within a crash reconstruction
context where these calculations would often be carried out
within a spreadsheet. Additionally, each BNP function would

Figure 1. Representative Normalized Longitudinal and Lateral Tire Force Curves



require its own set of four coefficients, none of which would
likely be known with any certainty for a crash reconstruction.

A simpler approach would be to combine the calculated
decoupled longitudinal and lateral tire forces in a way that
incorporates their interdependence and effect on one another.
The Nicolas-Comstock-Brach (NCB) model provides such a
method for combining decoupled longitudinal and lateral tire
forces [References 2, 3, 4, and 5]. These equations are listed
below.

(2)

(3)

Cs and Cα are determined from the coefficients in the BNP
equations and are defined as follows:

(4)

(5)

Once the normalized components of the tire forces are
calculated, an effective deceleration rate for each tire can be
calculated with the following equation [Reference 3].

(6)

This equation projects the tire force components onto the
vehicle velocity direction to determine the portion of these
tire forces that is opposing the velocity at any particular
point, a concept that is illustrated from a top down view in
Figure 2. In this equation, µ0 is the nominal roadway
coefficient of friction and feff,i is the effective deceleration
rate at the ith wheel position. An effective deceleration rate
should be calculated for each wheel position.

Figure 2. Direction of feff,i, QX(α,s), Qy(α,s) in Relation
to the Velocity Direction and α

Once an effective deceleration rate is obtained for each wheel
position, they can be combined into an effective deceleration
rate for the vehicle as a whole with the following equation. In
this equation, Wtotal is the total weight of the vehicle, Wi is
the static weight on each wheel position and N is the total
number of wheels.

(7)

Brach's papers have demonstrated that when combined, the
BNP and NCB models can yield realistic tire force
component calculations and vehicle motion for simulations
with conditions of combined braking and cornering
[References 2, 3, 4, and 5]. Later in this paper, we will verify
that this accuracy translates from a forward-simulation
context to a backwards-reconstruction context (where the
motion is known from physical evidence and the forces that
caused that motion are being inferred). Specifically, we will
verify that the BNP and NCB models can be used with
typical or representative parameters to obtain accurate vehicle
speeds for a braking and cornering vehicle with Equations (6)
and (7).

MARTINEZ-SCHLUETER MODEL
In Reference 6, Martinez and Schlueter proposed the
following equation for calculating the deceleration rate of a
vehicle undergoing both yawing and braking:1

1Reference 7 contains additional discussion of this equation.



(8)

In this equation, κB is a parameter Martinez and Schlueter
termed “fractional lockup.” This term is not defined in their
paper, but we presume it was intended to equal the braking
level as a proportion of the available friction, and having
values ranging from zero to one. This model displays
physically unrealistic behavior. As an example, consider a
vehicle with a sideslip angle of 90 degrees. At this sideslip
angle, the deceleration rate of the vehicle should be equal to
the nominal friction coefficient, independent of the level of
braking. However, for a 90 degree sideslip angle and a
fractional lockup of 0.5, Equation (8) yields a deceleration
rate of 0.866µ0. The deceleration rate continues to decline as
the braking level increases, approaching zero as the fractional
lockup approaches 1.0 (locked-wheel braking).

Examination of the bracketed terms in Equation (8) reveals
the source of this error. As κB approaches a value of 1.0
(locked-wheel braking), the inverse tangent term approaches
90 degrees. When this angle is combined with the sideslip
angle, the result is a term that can vary between 0 and 180
degrees. This model deviates from the expected behavior
because the sine function decreases for angles greater than 90

degrees. The graph below (Figure 3) depicts this incorrect
behavior of Equation (8) across a wider range of conditions.
It presents the normalized deceleration (the deceleration rate
divided by the sliding friction) calculated from the Martinez
equation for various values of κB and α.

The curve for a fractional lockup of zero exhibits reasonable
behavior. Once braking is added, however, the behavior of
the model degrades significantly. With a fractional lockup of
0.5, the curve begins at 0.5, as it should. It then rises to a
peak of 1.0 at a sideslip angle around 60 degrees - reasonable
behavior. Beyond that point, however, the behavior of the
model becomes unrealistic, with the deceleration rate
decreasing with increasing sideslip angle. In actuality, the
deceleration rate should remain near 1.0 through the range of
sideslip angles from 60 to 90 degrees. The behavior of the
curve with a fractional lockup of 1.0 is worse. It should
exhibit a deceleration rate near 1.0 across the entire range of
sideslip angles. Instead, it starts at a normalized deceleration
rate of 1.0 and steadily diminishes to zero across the range of
sideslip angles from 0 to 90 degrees. The unrealistic behavior
of Equation (8) led us to reject its use for the remainder of
this research.

CRASH MODEL
Another option for calculating a yawing and braking vehicle's
deceleration rate is included in the 2010 edition of Traffic

Figure 3. Result of Martinez Equation for Various Sideslip Angles and Fractional Lockup Values



Crash Reconstruction by Lynn Fricke [Reference 8]. This
equation, which Fricke attributed to the CRASH program, is
listed below:

(9)

The behavior and physical accuracy of this equation is
significantly better than that of Equation (8). Sample curves
plotted using this equation are included in Figure 4 below. In
this graph, the normalized deceleration rate is plotted as a
function of sideslip angle and braking level. As this graph
shows, Equation (9) yields a normalized deceleration rate of
1.0 for a braking level of 1.0, independent of the sideslip
angle - physically correct behavior. For braking levels less
than 1.0, the equation yields deceleration rates that start out at
the braking level when the sideslip angle is zero and build up
to 1.0 as the sideslip angle goes to 90 degrees, which is again
physically reasonable behavior.

DESCRIPTION OF FULL SCALE
TESTS
The authors conducted a number of yaw tests with a 2008
Chevrolet Malibu on August 18, 2008. Two of these tests will
be considered here. The Malibu used for the testing was

outfitted with Hankook Winter Ipike tires of size 225/60R16.
The vehicle was instrumented with a VBOX IISX + Slip,
Pitch and Roll Angle data acquisition system from Racelogic.
The VBOX recorded the vehicle's translational and angular
position and the Vehicle CAN Interface recorded wheel
speeds and steering position from the Malibu's internal
sensors. All data was recorded at 20 Hz. Figure 5 depicts the
Malibu test vehicle with the three VBOX GPS antenna
attached magnetically to its roof. The series of photographs in
Figure 6 below were taken during yaw Test #2 and depicts
motion typical of the tests. In addition to these tests, a
straight-line skid-to-stop test was run to quantify the roadway
coefficient of friction for the analysis reported later in this
paper. For this test, the ABS system was disabled to allow for
fully locked wheels during the deceleration. This test yielded
a sliding friction value of 0.79.

Test 1: In the first test considered here, the Malibu was
accelerated to a speed of approximately 48 mph. During our
testing with the Malibu, several attempts were made to induce
a yaw using only steering inputs. Although tracking of the
rear tires outside the front tires did occur during these
attempts, the yawing was insufficient to reach large sideslip
angles. In order to induce yaw rotation of the magnitude
needed for this study, the parking brake was applied
temporarily to initiate the yaw. In this first test, the driver
applied the parking brake and made a steering input to the left
to induce severe yaw rotation. Once the yaw was initiated, the

Figure 4. Result of CRASH Equation for Various Sideslip Angles and Braking Levels



driver released the parking brake and the vehicle yawed
approximately 180 degrees in a counter-clockwise direction.
Once the parking brake was released, the driver reported no
additional braking. The wheel speed sensor data, though,
indicated there may have been some small amount of braking
near the end of the test, when the vehicle was rolling
backwards to rest.

The position of the test vehicle was documented before and
after the test. The test surface was surveyed and
photographed as were tire marks that the test vehicle
deposited during the test. A scene diagram was created from
this survey data. The data acquired with the VBOX was
synchronized to the physical evidence (the tire marks) by
importing both the scene diagram and the VBOX data into an
animation software package. The VBOX data was assigned to
a vehicle model within that animation software package and
the motion of this vehicle was aligned to the tire marks. Once
synchronized in this manner, the VBOX data could be
examined at each vehicle location of interest.

The tire marks were analyzed to obtain inputs for our
deceleration rate calculations. Specifically, we obtained the
longitudinal slip percentage and sideslip angle for each of the
vehicle's tires at a number of positions along the vehicle's

path. At each selected position, the sideslip angles of the rear
tires were determined based on the alignment of the vehicle
with the tire marks. Since the front tires are steerable, the
sideslip angles of the front tires were determined by adding or
subtracting the steering angle at the tire from the sideslip
angles at the rear tires. The longitudinal slip percentages of
the Malibu tires were then calculated using striation analysis
as presented in Reference 9. This reference presented
equations that relate the orientation and spacing of yaw mark
striations to the vehicle braking and steering levels present at
the time the striations were deposited. Conceptually, such
analysis relies on the idea that tire mark striations are direct
physical evidence of the actual direction of the force that was
applied to the tire at the time the mark was deposited.
Without braking, the tire force is perpendicular to the tire
heading, and thus, the striations produced are perpendicular
to the tire heading. Thus, in conducting our analysis, we were
calculating the longitudinal slip level that would result in the
actual tire force direction lying along the striation direction.

Test 2: In the second test considered here, the Malibu was
again accelerated up to a speed of approximately 48 mph.
The parking brake was then applied and the driver made a
steering input to the right initiating a clockwise yaw. The
parking brake was then released and the driver applied the

Figure 5. Chevrolet Malibu Test Vehicle

Figure 6. Photographs Taken During Yaw Test #2



service brakes and counter-steered aggressively to the left.
During the event, the vehicle yawed approximately 90
degrees. The wheel speed sensor data obtained from the
VBOX showed that the ABS did not engage during the test.

Again, the position of the test vehicle was surveyed both
before and after the test. The test surface and the tire marks
that resulted from the test were surveyed and photographed.
A scene diagram was created from this survey data and the
data acquired with the VBOX was synchronized to the tire
marks. The tire marks were analyzed to obtain inputs for our
deceleration rate calculations. Some of the results of this tire
mark analysis are shown in the graph below (Figure 7). This
graph shows the longitudinal slip percentages for the left rear
wheel. At the first position, the driver was in the process of
releasing the parking brake (60% slip). The next three
positions have longitudinal slip near 0% and represent the
time between the release of the parking brake and application
of the service brakes. Reflecting the service brake

application, the slip percentage then increases to a value of
around 10% for the 5th and 6th positions.

COMPARISON TO FULL SCALE
TESTING
For each of these full-scale yaw tests, the authors conducted a
speed analysis using two of the models discussed earlier, the
BNP/NCB model and CRASH model. Also, a simple model
that assumed no braking and another that assumed full wheel
lockup were included for comparison. Using diagrams
created from our site survey, vehicle models were aligned
with the tire mark evidence as depicted in Figures 8 and 9.
The segment lengths between positions were measured and
the average vehicle sideslip angles were calculated based on
the angles at the beginning and end of the segments. To
account for braking, the BNP/NCB and CRASH models
require the longitudinal slip percentages to be known. Tire
mark striations were used to calculate longitudinal slip
percentages [Reference 9].

Figure 7. Calculated and Measured Longitudinal Slip Percentages for Test 2 Positions

Figure 8. Analyzed Positions for Test 1



During the phase of the yaws where the parking brake was
applied, the rear tires of the Malibu locked while the front
tires were unaffected. This lockup was apparent in the tire
mark evidence. Figure 10, for instance, shows the tire marks
from Test 2. In this figure, each tire mark has been labeled
with the tire responsible for depositing it. Longitudinal
striations indicating wheel lockup are evident in the early
portions of the left and right rear tire marks. Thus, the
longitudinal slip percentage of the rear tires were assigned a
value of 100% during this phase. Lighter longitudinal
striations were also observed in the front tire marks, and these
were considered in the analysis. Once the parking brake was
released, striations from the rear leading tire mark were used
to calculate longitudinal slip percentages and these values
were applied to all tires. When the striation analysis indicated
that a driven wheel was free rolling, the wheel was assigned a
longitudinal slip percentage of 0.5%, to correspond with the
measured rolling resistance of a similar vehicle documented
in Reference 10. When tire marks from a non-driven wheel
indicated no braking, a longitudinal slip value of 0% was
used. In Test 1, the service brakes were not applied after the
parking brake was released, so the longitudinal slip
percentages were assigned values commensurate with free-

rolling wheels. In Test 2, we used the longitudinal slip
percentages shown in Figure 7.

Four different methods were used to calculate the
deceleration of the vehicle during each of the segments
shown in Figures 8 and 9. These methods are summarized in
Table 2. The first model, which we have termed the Simple
No Braking Model, is similar to a model presented by Daily,
Shigamura, and Daily [Reference 11], neglecting rolling
resistance and roadway slope. The Simple No Braking
Model, as well as the model presented in Reference 11, do
not account for braking, and thus the Simple No Braking
Model is used here to demonstrate a lower boundary on the
speed in a vehicle sideslip angle analysis. Likewise, the Full
Lockup Model is presented to demonstrate an upper
boundary.

For the analysis in this paper, use of the CRASH model
required calculation of the (flong/µo) term. To calculate this
value for a given segment, we first utilized the striation
evidence in the tiremarks to calculate a longitudinal slip
percentage, then used the NCB equations and the coefficients
listed in Table 1 to determine the proportion of longitudinal

Figure 9. Analyzed Positions for Test 2

Figure 10. Tire Evidence Showing the Rear Tires Locked up in Test 2



force. In other words, the longitudinal slip was calculated
from striation evidence, and used to calculate QX(s), which is
equivalent to (flong/µo) in this application.

Using the deceleration rates calculated with the models in
Table 2, speeds at the beginning of each segment were
calculated using Equations (10) and (11). These equations
yield the speed at the beginning of the segment, given the
speed at the end of the segment, the deceleration rate and the
segment distance. Equation (10) is in general terms whereas
Equation (11) is the common crash reconstruction equation,
expressed in units of speed in miles per hour, distance in feet,
and acceleration in g's.

(10)

(11)
For Test #1, our analysis of the vehicle speed began at the
end of the tire marks and worked back to the beginning. We
chose not to begin the analysis of this test at rest because the
VBOX data became erratic during the rollout phase at the end
of the test. For Test #2, our analysis began at the vehicle rest
position and worked back to the beginning of the tire marks.
Figures 11 and 12 depict the results of this analysis. In these
graphs, vehicle speed is plotted against distance. The solid
black line represents the vehicle speed obtained from the
VBOX. The other four curves represent the speeds obtained
with the four methods listed in Table 2. As was expected, the

no-braking model underestimated the vehicle speed over the
entire duration of the test. Similarly, using roadway friction
for the deceleration value (full lockup) overestimated the
speed. For the two yaw tests analyzed in this study, both the
BNP/NCB model and CRASH model yielded acceptable
estimates for the vehicle speed.

DISCUSSION
Comparison of the above tire models to full-scale vehicle
tests shows that reasonable agreement can be achieved
between calculated speeds and actual speeds. Implementation
of such a tire model in a spreadsheet has advantages over
simulation in that it is often simpler, more straightforward
and less time consuming. With a robust tire model, the results
can be expected to be similar. However, simulation may
account for complexities beyond the scope of the above tire
modeling techniques, and may be useful when exploring
driver inputs, irregular terrain or time-space relationships.

This paper aimed to explore the accuracy of several tire
models for determining the speed of yawing and braking
vehicles by comparing the vehicle speeds calculated by the
models to vehicle speeds in controlled test conditions. In
practice, the crash reconstructionist should consider the
uncertainty of inputs to these models for a specific case. For
instance, uncertainty in parameters such as the tire-roadway
sliding coefficient of friction should be recognized.

The BNP/NCB model and the CRASH model presented
above utilize striation analysis to determine braking levels.
The striation analysis should not be trivialized, as the

Table 2. The Four Models Used to Analyze Vehicle Speed



calculated vehicle speeds are sensitive to braking levels,
particularly at low vehicle sideslip angles. Absent striations,
tire marks can still be used to calculate vehicle sideslip
angles, and braking levels can then be varied to provide a
speed range.

The tests described in this paper were performed on a four-
wheeled passenger vehicle, and thus the conclusions drawn
from the tire model comparisons should only be seen as
relevant to four-wheeled vehicles. However, it is conceivable
that the NCB model and the CRASH model would also be
applicable to vehicles with differing number of tires, as long
as appropriate BNP coefficients are used for the tire type, and
Equation 7 is applied properly to account for all tires. Future
testing by the authors may include vehicles with more than
four tires.

Although longitudinal and lateral data exist for specific tires,
it is unlikely that data for a specific make, model, and size of
tire on a subject vehicle will be publicly available, given the
immense variety of tires in the marketplace. Thus, the
calculations presented utilized representative tire model
parameters. Future testing in this area may involve

comparison of calculated speeds using generic tire model
parameters to those using tire-specific parameters.

Although the BNP/NCB and CRASH models provided
reasonable speed estimates when compared to these tests, the
models are different. A study of the differences between the
models is outside the scope of this paper, but may be the
topic of future work.

CONCLUSIONS
The BNP/NCB model yielded satisfactory estimates of the
vehicle speed during both tests, despite the use of generic tire
model parameters in the BNP equations. This model
underestimated the vehicle speeds for the later portions of the
test. It slightly overestimated the initial speed for one test and
slightly underestimated the initial speed for the other.

The CRASH model yielded satisfactory estimates of the
vehicle speed during both tests. Like the BNP/NCB model,
the CRASH model underestimated the vehicle speeds for the
later portions of the test. The initial vehicle speeds obtained
from the CRASH model were nearly identical to the VBOX

Figure 11. Test 1 Analysis Results



speed for Test 1, and slightly underestimated the speed for
Test 2.

The reasonable speed estimates that both the BNP/NCB and
CRASH models yielded in this research were achieved with
the use of braking levels determined from tire mark striations.
Previous research by the authors, which was reported in
Reference 9, described the methodology used for this type of
analysis. This paper has shown that when implemented, such
analysis can yield accurate speed estimates.
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